Laman


Minggu, 03 April 2011

Ruang bakar


Pada motor diesel konstruksi ruang bakar sangat penting. Ruang bakar adalah ruangan yang dibentuk antara kepala silinder dengan piston bagian atas, dengan maksud agar pembakaran dapat terlaksana dengan sempurna dan menyeluruh pada langkah tenaga. Menurut Arismunandar (1994) ada 4 jenis ruang bakar yang umum digunakan yaitu :

1. ruang bakar terbuka

2. ruang bakar kamar muka

3. ruang bakar turbulen, dan

4. ruang bakar lanova

5.

Ruang bakar terbuka

Ruang bakar terbuka adalah desain ruang bakar yang paling sederhana. Disini, tugas penyemprot bahan (injector) bakar sangat berat, karena harus mengkabutkan dan menistribusikan secara merata agar terjadi pembakaran sempurna. Bahan bakar ini harus bercampur dengan udara yang dipadatkan sampai bagian terjauh, namun harus dijaga agar tidak menembus sampai silinder karena dapat merusak kualitas pelumas. Tipe ruang pembakaran ini menggunakan tekanan injektor 180-300 kg/cm2 bahkan dapat mencapai 1500-2000 kg/cm2 enjin diesel besar. Ruang bakar ini lebih cocok dipergunakan pada motor diesel putaran rendah.

Motor diesel putaran rendah dikatakan paling ekonomis konsumsi bahan bakarnya spesifiknya, yaitu antara 150-185 g/PS-jam.

Ruang bakar kamar muka

Ruang bakar kamar muka, terdiri dari dua bagian, yaitu kamar muka dan ruang bakar utama seperti ditunjukkan pada Gambar. Kamar muka berupa ruang kecil (30-40% volume ruang sisa) disebelah ruang bakar utama, dimana injektor ditempatkan. Menjelang 25-30 derajat sebelum TMA bahan bakar disemprotkan. Pembakaran yang terjadi di kamar muka, namun karena jumlah udara dalam kamar muka terbatas maka pembakaran masih belum sempurna. Namun demikian, adanya tekanan udara yang tinggi hasil pembakaran awal ini mendorong bahan bakar ke ruang bakar utama dengan kecepatan tinggi sehingga pembakaran lanjutan dapat dilakukan lebih sempurna. Proses ini disebut proses pengabutan kedua. Ruang bakar tipe ini tidak membutuhkan injektor tekanan tinggi, biasanya digunakan tipe nosel pasak dengan tekanan semprot antara 85-140 kg/cm2 dengan rasio kompresi berkisar antara 16-17. Ini menguntungkan karena bahan bakarnya lebih murah, dan dapat menggunakan bahan bakar dengan viskositas lebih tinggi. Tekanan gas maksimum berkisar antara 50 - 60 kg/cm2.

Dibandingkan dengan ruang bakar kamar terbuka, pemakaian bahan bakar spesifik sekitar 15% lebih boros, yaitu antara 190-220 g/PS-jam. Kerugian kalor ini disebabkan volume ruang bakarnya yang lebih besar, sehingga banyak panas yang hilang karena proses pindah panas melalui dinding ruang bakar. Pada saat dingin kadang sulit dihidupkan, sehingga perlu ditambahkan pemanas di kamar muka.

Ruang bakar turbulen

Ruang bakar turbulen mempunyai konstruksi yang mirip dengan ruang bakar kamar muka, yaitu mempunyai 2 bagian. Namun demikian bagian turbulen merupakan 80-90% dari volume sisa, seperti ditunjukkan pada Gambar.

Dengan desain seperti angka 9, maka udara yang ditekan pada langkah kompresi mengalami turbulensi, dan bergerak makin kencang seiringdengan kecepatan torak yang mendorong udara tersebut. Pada saat bahan bakar disemprotkan, turbulensi ini membantu proses pengkabutan bahan bakar dan pencampurannya dengan udara. Karena itu enjin dengan ruang bakar ini juga tidak memerlukan injektor dengan tekanan tinggi, umumnya antara 85-140 kg/cm2. Seperti juga ruang bakar kamar muka, enjin dengan ruang bakar ini juga memerlukan pemanas (glow plug). Adanya turbulensi mempersingkat perioda pembakaran terkendali, sehingga ruang bakar ini sangat baik untuk motor diesel tekanan tinggi. Tekanan gas maksimum berkisar 60-70 g/cm2. Pemakaian bahan bakar spesifik pada jenis ruang bakar ini juga cukup irit, yaitu berkisar 185-210 g/PS-jam.


Ruang bakar lanova

Prinsip kerja ruang bakar lanova mirip dengan ruang bakar terbuka, perbedaan utamanya terletak pada penempatan injektornya tidak dalam ruang lanova tetapi di sebelah luarnya. Sekitar 60% bahan bakar disemprotkan di ruang lanova kecil (yang volumenya hanya 10% dari ruang sisa). Ruang lanova terbagi dua, yaitu ruang lanova kecil dan ruang lanova besar. Pada saat bahan bakar disemprotkan, mula-mula terjadi pembakaran pada ruang lanova kecil. Kenaikan tekanan karena pembakaran ini menyebabkan campuran bahan bakar yang belum terbakar menyembur ke ruang lanova besar pada kecepatan tinggi, maka terjadi proses pencampuran yang lebih efektif dan menyebabkan arus turbulen. Pada saat torak mulai turun dari TMA menuju ke TMB terjadi perbedaan tekanan yang sangat besar antara ruang lanova dan ruang bakar utama, sehingga campuran bahan bakar dan udara memasuki ruang bakar utama dengan kecepatan lebih tinggi dan terjadi proses pembakaran yang lebih sempurna. Ruang bakar ini menggunakan tekanan nosel 125-130 kg/cm2, dengan sudut pancaran yang lebih kecil. Jenis ruang bakar ini cocok untuk bahan bakar dengan nilai cetan yang lebih tinggi. Perbandingan kompresi umumnya untuk enjin dengan ruang bakar jenis ini berkisar 13-15 (cukup rendah). Tekanan gas maksimum mencapai 60-100 kg/cm2. Pemakaian bahan bakar spesifik juga lebih irit jika dibandingkan dengan ruang bakar kamar terbuka. Ruang bakar jenis ini sangat menguntungkan, terutama penggunaannya pada mesin diesel dengan beragam kecepatan, termasuk kecepatan tinggi.

ARTI KODE PADA BUSI



Mungkin di antara kalian tidak tau busi type apa yang terpasang pada motor saat ini. mungkin juga kalian cuma tau typenya ada 2 macam yaitu busi panas atau busi dingin, tetapi kalau di tanya apa yang menandakan busi type panas, mungkin diantara kalian ada yang bingung dan asal terka aja, misalkan kalian beli busi baru trus gak bawa contoh, kamu di kasih busi sama penjual yang ulirnya panjang, padahal motor kamu pakai ulir pendek. Yang parah lagi kalian di kasih busi buat mobil atau busi buat speed bisa-bisa motor pingin berenang terus. mungkin juga busi mesin pemotong rumput, motornya pingin ke tempat rumput mulu...... hehehehe.......... ada baiknya kalian tau type busi motor yang akan di gunakan, paling gak ulir busi yang akan digunakan. nah gak usah banyak mikir silahkan liat sendiri atau rame-rame...........

NGK

C : diameter ulir
B - 14 mm
C - 10 mm
D - 12 mm
P : type rancangan busi hanya pabrik yang tau

R : busi dengan resistor, untuk mesin teknology digital,
menghindari terjadinya frekuensi yang bisa mengganggu pembacaan sensor digital

8 : tingkat panas busi
Semakin kecil angka 4, 3, 2 = busi panas .
Semakin besar angka 7, 8, 9 = busi dingin

E : panjang ulir busi
H : 12,7 mm
E : 19 mm
L : 11, 2mm

S : type elektroda standar
IX - bahan iridium,
G - busi racing (spesial performance)
P - bahan platinum,
S - bahan tembaga standar
K - 2 elktroda
T - 3 elektroda
Q - 4 elektroda

9 : celah elektroda
9 = 0,9mm
10 = 1mm

Denso

U : diameter ulir busi
U - 10mm
X - 12mm
W - 14mm

22 : tingkat panas busi
Semakin kecil angka 4, 3, 2, = busi panas 20, 19, 18 .
Semakin besar angka 24, 26 = busi dingin

F : panjang ulir
E : 19 mm
F : 12,7 mm
L : 11,2 mm

S : type rancangan busi

-U : bentuk elektroda yang ada disanping

9 : celah elektroda
9 = 0,9 mm
10 = 1 mm

Pengaruh Celah Busi Terhadap Konsumsi BBM


Celah alias gap busi yang sering dianggap sepele, ternyata bisa jadi faktor penyebab borosnya konsumsi BBM di motor. Makanya perawatan rutin alias servis berkala jadi sangat penting dilakukan. Salah satunya, pengecekan celah busi untuk mendapat konsumsi BBM paling ideal.

Kalau penasaran, bisa tengok buku servis yang sudah jadi kelengkapan sejak motor masih anyar. Setiap motor punya celah busi yang sudah disarankan pabrikan. Bila penyetelan di luar ketentuan, tak hanya BBM yang amblas, tetapi akselerasi dan top speed bisa tersunat.

Hubungannya dengan kinerja mesin sangat erat dengan waktu pengapian dan besarnya percikan api di ruang bakar. "Kalau celah busi terlalu rapat, tarikan awal sedikit berkurang dan gejala ngelitik terasa karena mesin menjadi cepat panas," jelas David Ahie, mekanik balap yang piawai di soal pengapian mobil.

Sebaliknya bila celah terlalu renggang, percikan api memang menjadi besar namun disertai penurunan stasioner (langsam) karena timing pengapian menjadi mundur. Berbuntut tenaga mesin menjadi enak tetapi konsumsi lebih boros.

Jadi, menurut Ahie sebaiknya setelan busi dibuat pas atau sesuai standar pabrik saja bila untuk pemakaian harian. "Kalau mau irit, rapatkan sedikit sekitar 0,1 mm atau gunakan patokan celah terkecil yang disarankan pabrik," terangnya.

Biar tidak penasaran, OTOMOTIF melakukan tes komparasi celah (kerenggangan) busi di Suzuki Thunder 125 yang masih 'perawan' dari pabrik. Tes pakai busi anyar versi aftermarket merek Denso dengan kerenggangan 0,40 mm, 0,60 mm dan 0,80 mm.

Pakai bensin sejumlah 50 cc, mesin dihidupkan dengan putaran mesin konstan di 3.000 rpm. Asumsinya adalah pada putaran ini mesin dalam kondisi econo ride. Lalu mesin dihidupkan sampai 50 cc di gelas takar habis yang dibarengi pencatatan waktu.

Hasilnya cukup mengagetkan mengingat perbedaan celah busi hanya terpaut 0,20 mm setiap setelan. Dari penghitungan tes, kondisi celah busi pada setelan 0,60 mm paling hemat karena butuh waktu paling lama buat menghabiskan 50 cc bensin; 8,05 detik.

Sementara pada setelan 0,40 mm, bensin sebanyak 50 cc habis dalam waktu lebih cepat (7,43) detik yang dibarengi dengan suhu mesin lebih tinggi. Lain lagi saat busi disetel pada celah 0,80 mm. Bensin 50 cc di gelas takar habis hanya dalam waktu 6,48 detik. Dari data komparasi ini sangat menjelaskan bagaimana kerenggangan celah busi bisa berpengaruh ke konsumsi.